07/15/19 [imagej-elphel][gpu] by AndreyFilippov: Implemented MPO export for EO/LWIR dual-quad rig
AndreyFilippov committed changes to the Elphel git project :
Implemented MPO export for EO/LWIR dual-quad rig
Implemented MPO export for EO/LWIR dual-quad rig
07/13/19 [imagej-elphel][gpu] by AndreyFilippov: Implementing batch mode for EO/LWIR images
AndreyFilippov committed changes to the Elphel git project :
Implementing batch mode for EO/LWIR images
Implementing batch mode for EO/LWIR images
07/11/19 [imagej-elphel][gpu] by AndreyFilippov: AUX (LWIR) extrinsic adjustments with main camera ground truth
AndreyFilippov committed changes to the Elphel git project :
AUX (LWIR) extrinsic adjustments with main camera ground truth
AUX (LWIR) extrinsic adjustments with main camera ground truth
07/11/19 [imagej-elphel][gpu] by AndreyFilippov: compositeScan() with multi-plane (FG/BG) results
AndreyFilippov committed changes to the Elphel git project :
compositeScan() with multi-plane (FG/BG) results
compositeScan() with multi-plane (FG/BG) results
07/10/19 [imagej-elphel][gpu] by AndreyFilippov: Ground truth from EO to LWIR
AndreyFilippov committed changes to the Elphel git project :
Ground truth from EO to LWIR
Ground truth from EO to LWIR
07/08/19 [elphel-web-393][framepars] by Oleg Dzhimiev: switched to flir's iron palette
Oleg Dzhimiev committed changes to the Elphel git project :
switched to flir's iron palette
switched to flir's iron palette
07/08/19 [imagej-elphel][gpu] by AndreyFilippov: minor cleanup
AndreyFilippov committed changes to the Elphel git project :
minor cleanup
minor cleanup
07/07/19 [imagej-elphel][gpu] by AndreyFilippov: refactoring, alignment with LWIR sensors
AndreyFilippov committed changes to the Elphel git project :
refactoring, alignment with LWIR sensors
refactoring, alignment with LWIR sensors
07/04/19 [imagej-elphel][gpu] by AndreyFilippov: Autoranging for lwir images/texture tiles
AndreyFilippov committed changes to the Elphel git project :
Autoranging for lwir images/texture tiles
Autoranging for lwir images/texture tiles
07/04/19 [imagej-elphel][gpu] by AndreyFilippov: splitting LPF sigma for Bayer/mono
AndreyFilippov committed changes to the Elphel git project :
splitting LPF sigma for Bayer/mono
splitting LPF sigma for Bayer/mono
07/04/19 [imagej-elphel][gpu] by AndreyFilippov: Getting processed LWIR images
AndreyFilippov committed changes to the Elphel git project :
Getting processed LWIR images
Getting processed LWIR images
07/03/19 [imagej-elphel][gpu] by AndreyFilippov: monochrome mode of the tile processor - debugging
AndreyFilippov committed changes to the Elphel git project :
monochrome mode of the tile processor - debugging
monochrome mode of the tile processor - debugging
07/03/19 [imagej-elphel][gpu] by AndreyFilippov: converting texture processing to work with monochrome too
AndreyFilippov committed changes to the Elphel git project :
converting texture processing to work with monochrome too
converting texture processing to work with monochrome too
07/02/19 [imagej-elphel][gpu] by AndreyFilippov: next snapshot working on monochrome mode in TP
AndreyFilippov committed changes to the Elphel git project :
next snapshot working on monochrome mode in TP
next snapshot working on monochrome mode in TP
Tensorflow with gpu
Setup (guide)
← Older revision Revision as of 23:32, 2 July 2019 (17 intermediate revisions by the same user not shown)Line 1: Line 1: ==Requirements== ==Requirements== −* Kubuntu 16.04.4 LTS+* Kubuntu 16.04 LTS ==Setup (guide)== ==Setup (guide)== Just follow: Just follow: −* [http://www.python36.com/install-tensorflow141-gpu/ '''this guide'''] (Ubuntu 16.04 64-bit, CUDA 9.1, cuDNN 7.1.2, python3) or+* The [[Tensorflow_with_gpu#Walkthrough_for_CUDA_10.1_.2820190602.29|'''walkthrough''']] in the bottom is for CUDA 10.1, cuDNN 7.6.1, python3 −* this [http://www.python36.com/how-to-install-tensorflow-gpu-with-cuda-9-2-for-python-on-ubuntu/ '''newer one'''] (Ubuntu 16.04 64-bit, CUDA 9.2, cuDNN 7.1.4, python3)+* [http://www.python36.com/how-to-install-tensorflow-gpu-with-cuda-9-2-for-python-on-ubuntu/ '''This guide'''] (Ubuntu 16.04 64-bit, CUDA 9.2, cuDNN 7.1.4, python3) +* [http://www.python36.com/install-tensorflow141-gpu/ '''This guide'''] (Ubuntu 16.04 64-bit, CUDA 9.1, cuDNN 7.1.2, python3) ==Setup (some details)== ==Setup (some details)== Line 130: Line 131: # Solution: # Solution: <b>~$ sudo pip3 install setuptools --upgrade</b></font> <b>~$ sudo pip3 install setuptools --upgrade</b></font> + +==Walkthrough for CUDA 10.1 (20190602)== + +===Install CUDA=== +* In this [https://www.tensorflow.org/install/gpu guide] there's a [https://developer.nvidia.com/cuda-toolkit-archive link to CUDA toolkit]. +** That toolkit (CUDA Toolkit 10.1 update1 (May 2019)) also updated the system driver to 418.67 +** Reboot +===Install cuDNN=== +* Have to have an account with NVIDIA - downloaded [https://developer.nvidia.com/rdp/cudnn-download#a-collapse761-101 cuDNN v7.6.1 (June 24, 2019), for CUDA 10.1] + +===Option 1: installing tensorflow from source=== +Basically, [https://www.tensorflow.org/install/source '''this guide'''], some key notes: +* [https://www.tensorflow.org/install/source#install_bazel Install bazel] - version 0.25.2 (newer will not work) +* To build, read [https://www.tensorflow.org/install/source#download_the_tensorflow_source_code this link]: + git clone https://github.com/tensorflow/tensorflow.git + cd tensorflow + git checkout r1.14 + ./configure + + bazel build --config=opt --config=cuda //tensorflow/tools/pip_package:build_pip_package + # 4-5 hours later + ./bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg + sudo pip3 install /tmp/tensorflow_pkg/tensorflow-[Tab] + +* Testing: + ~$ python3 + >>> import tensorflow as tf + >>> hello = tf.constant('Hello, World!') + >>> sess = tf.Session() + +===Option 2: using docker=== +Follow [https://www.tensorflow.org/install/docker '''this guide''']. Key notes: +* Tensorflow docker image requires nvidia docker image, nvidia docker image requires ''apt install nvidia-docker2'', ''nvidia-docker2'' requires ''apt install docker-ce'': + - https://github.com/NVIDIA/nvidia-docker + - https://docs.docker.com/install/linux/docker-ce/ubuntu/ + +* Test run: + # Test 1: GPU support inside container: + sudo docker run --runtime=nvidia --rm nvidia/cuda:10.1-base nvidia-smi + # Test 2: Test all together + sudo docker pull tensorflow/tensorflow:latest-gpu-py3-jupyter + sudo docker run --runtime=nvidia -it --rm tensorflow/tensorflow:latest-gpu-py3-jupyter python -c "import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))" + # Test 3: Run a local script (and include a local dir) in contatiner: + https://www.tensorflow.org/install/docker OlegTensorflow with gpu
Option 2: using docker
← Older revision Revision as of 23:13, 2 July 2019 (9 intermediate revisions by the same user not shown)Line 130: Line 130: # Solution: # Solution: <b>~$ sudo pip3 install setuptools --upgrade</b></font> <b>~$ sudo pip3 install setuptools --upgrade</b></font> + +==Walkthrough for CUDA 10.1 (20190602)== + +===Install CUDA=== +* In this [https://www.tensorflow.org/install/gpu guide] there's a [https://developer.nvidia.com/cuda-toolkit-archive link to CUDA toolkit]. +** That toolkit (CUDA Toolkit 10.1 update1 (May 2019)) also updated the system driver to 418.67 +** Reboot +===Install cuDNN=== +* Have to have an account with NVIDIA - downloaded [https://developer.nvidia.com/rdp/cudnn-download#a-collapse761-101 cuDNN v7.6.1 (June 24, 2019), for CUDA 10.1] + +===Option 1: installing tensorflow from source=== +Basically, [https://www.tensorflow.org/install/source '''this guide'''], some key notes: +* [https://www.tensorflow.org/install/source#install_bazel Install bazel] - version 0.25.2 (newer will not work) +* To build, read [https://www.tensorflow.org/install/source#download_the_tensorflow_source_code this link]: + git clone https://github.com/tensorflow/tensorflow.git + cd tensorflow + git checkout r1.14 + ./configure + + bazel build --config=opt --config=cuda //tensorflow/tools/pip_package:build_pip_package + # 4-5 hours later + ./bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg + sudo pip3 install /tmp/tensorflow_pkg/tensorflow-[Tab] + +===Option 2: using docker=== +Follow [https://www.tensorflow.org/install/docker '''this guide''']. Key notes: +* Tensorflow docker image requires nvidia docker image, nvidia docker image requires ''apt install nvidia-docker2'', ''nvidia-docker2'' requires ''apt install docker-ce'': + - https://github.com/NVIDIA/nvidia-docker + - https://docs.docker.com/install/linux/docker-ce/ubuntu/ + +* Test run: + # Test 1: GPU support inside container: + sudo docker run --runtime=nvidia --rm nvidia/cuda:10.1-base nvidia-smi + # Test 2: Test all together + sudo docker pull tensorflow/tensorflow:latest-gpu-py3-jupyter + sudo docker run --runtime=nvidia -it --rm tensorflow/tensorflow:latest-gpu-py3-jupyter python -c "import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))" + # Test 3: Run a local script (and include a local dir) in contatiner: + https://www.tensorflow.org/install/docker Oleg07/02/19 [imagej-elphel][gpu] by AndreyFilippov: more editing for lwir/monochrome, Bayer images are OK
AndreyFilippov committed changes to the Elphel git project :
more editing for lwir/monochrome, Bayer images are OK
more editing for lwir/monochrome, Bayer images are OK
Tensorflow with gpu
← Older revision
Revision as of 22:04, 2 July 2019
(2 intermediate revisions by the same user not shown)Line 130:
Line 130:
# Solution: # Solution:
<b>~$ sudo pip3 install setuptools --upgrade</b></font> <b>~$ sudo pip3 install setuptools --upgrade</b></font>
+
+==Walkthrough for CUDA 10.1==
+
+===CUDA===
+* In this [https://www.tensorflow.org/install/gpu guide] there's a [https://developer.nvidia.com/cuda-toolkit-archive link to CUDA toolkit].
+** That toolkit (CUDA Toolkit 10.1 update1 (May 2019)) also updated the system driver to 418.67
+** Reboot
+===cuDNN===
+* Have to have an account with NVIDIA - downloaded [https://developer.nvidia.com/rdp/cudnn-download#a-collapse761-101 cuDNN v7.6.1 (June 24, 2019), for CUDA 10.1]
Oleg
07/02/19 [imagej-elphel][gpu] by AndreyFilippov: Adding monochrome mode to CLT, snapshot tested with Bayer images
AndreyFilippov committed changes to the Elphel git project :
Adding monochrome mode to CLT, snapshot tested with Bayer images
Adding monochrome mode to CLT, snapshot tested with Bayer images
07/01/19 [x3domlet][] by Oleg Dzhimiev: php does not like ../?
Oleg Dzhimiev committed changes to the Elphel git project :
php does not like ../?
php does not like ../?
Pages
