01/04/20 [imagej-elphel][lwir] by AndreyFilippov: Testing/debugging
AndreyFilippov committed changes to the Elphel git project :
Testing/debugging
Testing/debugging
01/02/20 [imagej-elphel][lwir] by AndreyFilippov: Debugging Jacobian with delta
AndreyFilippov committed changes to the Elphel git project :
Debugging Jacobian with delta
Debugging Jacobian with delta
01/01/20 [imagej-elphel][lwir] by AndreyFilippov: just a comment
AndreyFilippov committed changes to the Elphel git project :
just a comment
just a comment
01/01/20 [imagej-elphel][lwir] by AndreyFilippov: more editing LMA debug
AndreyFilippov committed changes to the Elphel git project :
more editing LMA debug
more editing LMA debug
01/01/20 [imagej-elphel][lwir] by AndreyFilippov: Changed disp_dist format to [quad][4], implemented and connected new LMA
AndreyFilippov committed changes to the Elphel git project :
Changed disp_dist format to [quad][4], implemented and connected new LMA
Changed disp_dist format to [quad][4], implemented and connected new LMA
12/31/19 [imagej-elphel][lwir] by AndreyFilippov: finished first pass of new LMA creation
AndreyFilippov committed changes to the Elphel git project :
finished first pass of new LMA creation
finished first pass of new LMA creation
12/30/19 [imagej-elphel][lwir] by AndreyFilippov: working on Jacobian
AndreyFilippov committed changes to the Elphel git project :
working on Jacobian
working on Jacobian
12/30/19 [imagej-elphel][lwir] by AndreyFilippov: Working on new LMA correlation
AndreyFilippov committed changes to the Elphel git project :
Working on new LMA correlation
Working on new LMA correlation
12/27/19 [imagej-elphel][gpu] by Oleg Dzhimiev: inserted getClassLoader() so it could locate resources
Oleg Dzhimiev committed changes to the Elphel git project :
inserted getClassLoader() so it could locate resources
inserted getClassLoader() so it could locate resources
Quad stereo tensorflow eclipse
← Older revision
Revision as of 23:19, 27 December 2019
(12 intermediate revisions by the same user not shown)Line 2:
Line 2:
* Install Eclipse * Install Eclipse
* Clone and Import [https://git.elphel.com/Elphel/imagej-elphel imagej-elphel] * Clone and Import [https://git.elphel.com/Elphel/imagej-elphel imagej-elphel]
−<font color='tomato'>'''Note: if the project is updated/pulled outside Eclipse - need manual refresh'''</font>+<font color='red'>'''NOTE: if project is updated/pulled outside Eclipse - might need a manual refresh'''</font>
+* TF version is pulled from pom.xml
+* Trained TF model for EO sensors is auto-downloaded - [https://community.elphel.com/files/quad-stereo/ml/trained_model_v1.0.zip trained_model_v1.0.zip]
+* Get some image samples, provide paths
+* Before running the plugin (Eyesis_Correction), copy imagej options to /home/user/.imagejs/Eyesis_Correction.xml:
+<font size='1'>
+ <?xml version="1.0" encoding="UTF-8"?>
+ <!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
+ <properties>
+ <comment>last updated Thu Sep 08 14:09:47 MDT 2042</comment>
+ <entry key="ADVANCED_MODE">True</entry>
+ <entry key="DCT_MODE">True</entry>
+ <entry key="MODE_3D">False</entry>
+ <entry key="GPU_MODE">True</entry>
+ <entry key="LWIR_MODE">True</entry>
+ </properties>
+</font>
+* Updated pom.xml to TF 1.15 - package exists
+* Install cuDNN all 3 packages - runtime, dev and docs. Used docs to verify installation - built mnistCUDNN:
+ https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html
+* I think TF 1.15 maven package was built for CUDA 10.0 driver, and so it whines when 10.2 is installed.
+ <font size=1 color=red>2019-12-27 13:05:15.754656: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcudart.so.10.0'; dlerror: libcudart.so.10.0: cannot open shared object file: No such file or directory
+ 2019-12-27 13:05:15.754756: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcublas.so.10.0'; dlerror: libcublas.so.10.0: cannot open shared object file: No such file or directory
+ 2019-12-27 13:05:15.754860: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcufft.so.10.0'; dlerror: libcufft.so.10.0: cannot open shared object file: No such file or directory
+ 2019-12-27 13:05:15.754970: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcurand.so.10.0'; dlerror: libcurand.so.10.0: cannot open shared object file: No such file or directory
+ 2019-12-27 13:05:15.755075: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcusolver.so.10.0'; dlerror: libcusolver.so.10.0: cannot open shared object file: No such file or directory
+ 2019-12-27 13:05:15.755178: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcusparse.so.10.0'; dlerror: libcusparse.so.10.0: cannot open shared object file: No such file or directory
+ 2019-12-27 13:05:15.762197: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
+ 2019-12-27 13:05:15.762227: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1641] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.
+ Skipping registering GPU devices...</font>
+
+* TF 1.15 and CUDA 10.0 require GPU compute capability = 6.0, GeForce GTX 750Ti is 5.0:
+ <font color=red size=1>2019-12-27 14:22:17.475717: I tensorflow/cc/saved_model/reader.cc:31] Reading SavedModel from: /home/oleg/GIT/imagej-elphel/target/classes/trained_model
+ 2019-12-27 14:22:17.477009: I tensorflow/cc/saved_model/reader.cc:54] Reading meta graph with tags { serve }
+ 2019-12-27 14:22:17.503393: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 3392030000 Hz
+ 2019-12-27 14:22:17.504196: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x7f610dba1a20 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
+ 2019-12-27 14:22:17.504235: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version
+ 2019-12-27 14:22:17.505378: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1
+ 2019-12-27 14:22:17.517647: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
+ 2019-12-27 14:22:17.518168: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
+ name: GeForce GTX 750 Ti major: 5 minor: 0 memoryClockRate(GHz): 1.1105
+ pciBusID: 0000:01:00.0
+ 2019-12-27 14:22:17.518385: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.0
+ 2019-12-27 14:22:17.519624: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10.0
+ 2019-12-27 14:22:17.675574: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10.0
+ 2019-12-27 14:22:17.716621: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10.0
+ 2019-12-27 14:22:18.160070: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10.0
+ 2019-12-27 14:22:18.439862: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10.0
+ 2019-12-27 14:22:18.443378: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
+ 2019-12-27 14:22:18.443483: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
+ 2019-12-27 14:22:18.444034: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
+ 2019-12-27 14:22:18.444510: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1700] Ignoring visible gpu device (device: 0, name: GeForce GTX 750 Ti, pci bus id: 0000:01:00.0, compute capability: 5.0) with
+ '''Cuda compute capability 5.0. The minimum required Cuda capability is 6.0.'''
+ 2019-12-27 14:22:18.498425: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix:
+ 2019-12-27 14:22:18.498455: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165] 0
+ 2019-12-27 14:22:18.498463: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0: N
+ 2019-12-27 14:22:18.504855: I tensorflow/cc/saved_model/loader.cc:202] Restoring SavedModel bundle.
+ 2019-12-27 14:22:18.528948: I tensorflow/cc/saved_model/loader.cc:151] Running initialization op on SavedModel bundle at path: /home/oleg/GIT/imagej-elphel/target/classes/trained_model
+ 2019-12-27 14:22:18.581034: I tensorflow/cc/saved_model/loader.cc:311] SavedModel load for tags { serve }; Status: success. Took 1105321 microseconds.
+</font>
+* So, <font color='darkgreen'>'''TF1.15 + CUDA 10.0 might work with GeForce GTX 1080 Ti (compute capability 6.1)'''</font>
+TF Test button in Eyesis_Correction plugin worked with CUDA 10.0 (even with nvidia-smi showing CUDA 10.1 - it's probably not relevant to the libs used)
Oleg
Quad stereo tensorflow eclipse
← Older revision
Revision as of 21:55, 27 December 2019
(10 intermediate revisions by the same user not shown)Line 2:
Line 2:
* Install Eclipse * Install Eclipse
* Clone and Import [https://git.elphel.com/Elphel/imagej-elphel imagej-elphel] * Clone and Import [https://git.elphel.com/Elphel/imagej-elphel imagej-elphel]
−<font color='tomato'>'''Note: if the project is updated/pulled outside Eclipse - need manual refresh'''</font>+<font color='red'>'''NOTE: if project is updated/pulled outside Eclipse - might need a manual refresh'''</font>
+* TF version is pulled from pom.xml
+* Trained TF model for EO sensors is auto-downloaded - [https://community.elphel.com/files/quad-stereo/ml/trained_model_v1.0.zip trained_model_v1.0.zip]
+* Get some image samples, provide paths
+* Before running the plugin (Eyesis_Correction), copy imagej options to /home/user/.imagejs/Eyesis_Correction.xml:
+<font size='1'>
+ <?xml version="1.0" encoding="UTF-8"?>
+ <!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
+ <properties>
+ <comment>last updated Thu Sep 08 14:09:47 MDT 2042</comment>
+ <entry key="ADVANCED_MODE">True</entry>
+ <entry key="DCT_MODE">True</entry>
+ <entry key="MODE_3D">False</entry>
+ <entry key="GPU_MODE">True</entry>
+ <entry key="LWIR_MODE">True</entry>
+ </properties>
+</font>
+* Updated pom.xml to TF 1.15 - package exists
+* Install cuDNN all 3 packages - runtime, dev and docs. Used docs to verify installation - built mnistCUDNN:
+ https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html
+* I think TF 1.15 maven package was built for CUDA 10.0 driver, and so it whines when 10.2 is installed.
+ <font size=1 color=red>2019-12-27 13:05:15.754656: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcudart.so.10.0'; dlerror: libcudart.so.10.0: cannot open shared object file: No such file or directory
+ 2019-12-27 13:05:15.754756: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcublas.so.10.0'; dlerror: libcublas.so.10.0: cannot open shared object file: No such file or directory
+ 2019-12-27 13:05:15.754860: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcufft.so.10.0'; dlerror: libcufft.so.10.0: cannot open shared object file: No such file or directory
+ 2019-12-27 13:05:15.754970: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcurand.so.10.0'; dlerror: libcurand.so.10.0: cannot open shared object file: No such file or directory
+ 2019-12-27 13:05:15.755075: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcusolver.so.10.0'; dlerror: libcusolver.so.10.0: cannot open shared object file: No such file or directory
+ 2019-12-27 13:05:15.755178: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcusparse.so.10.0'; dlerror: libcusparse.so.10.0: cannot open shared object file: No such file or directory
+ 2019-12-27 13:05:15.762197: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
+ 2019-12-27 13:05:15.762227: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1641] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.
+ Skipping registering GPU devices...</font>
+
+* TF 1.15 and CUDA 10.0 require GPU compute capability = 6.0, GeForce GTX 750Ti is 5.0:
+ <font color=red size=1>2019-12-27 14:22:17.475717: I tensorflow/cc/saved_model/reader.cc:31] Reading SavedModel from: /home/oleg/GIT/imagej-elphel/target/classes/trained_model
+ 2019-12-27 14:22:17.477009: I tensorflow/cc/saved_model/reader.cc:54] Reading meta graph with tags { serve }
+ 2019-12-27 14:22:17.503393: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 3392030000 Hz
+ 2019-12-27 14:22:17.504196: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x7f610dba1a20 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
+ 2019-12-27 14:22:17.504235: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version
+ 2019-12-27 14:22:17.505378: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1
+ 2019-12-27 14:22:17.517647: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
+ 2019-12-27 14:22:17.518168: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
+ name: GeForce GTX 750 Ti major: 5 minor: 0 memoryClockRate(GHz): 1.1105
+ pciBusID: 0000:01:00.0
+ 2019-12-27 14:22:17.518385: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.0
+ 2019-12-27 14:22:17.519624: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10.0
+ 2019-12-27 14:22:17.675574: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10.0
+ 2019-12-27 14:22:17.716621: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10.0
+ 2019-12-27 14:22:18.160070: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10.0
+ 2019-12-27 14:22:18.439862: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10.0
+ 2019-12-27 14:22:18.443378: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
+ 2019-12-27 14:22:18.443483: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
+ 2019-12-27 14:22:18.444034: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
+ 2019-12-27 14:22:18.444510: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1700] Ignoring visible gpu device (device: 0, name: GeForce GTX 750 Ti, pci bus id: 0000:01:00.0, compute capability: 5.0) with
+ '''Cuda compute capability 5.0. The minimum required Cuda capability is 6.0.'''
+ 2019-12-27 14:22:18.498425: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix:
+ 2019-12-27 14:22:18.498455: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165] 0
+ 2019-12-27 14:22:18.498463: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0: N
+ 2019-12-27 14:22:18.504855: I tensorflow/cc/saved_model/loader.cc:202] Restoring SavedModel bundle.
+ 2019-12-27 14:22:18.528948: I tensorflow/cc/saved_model/loader.cc:151] Running initialization op on SavedModel bundle at path: /home/oleg/GIT/imagej-elphel/target/classes/trained_model
+ 2019-12-27 14:22:18.581034: I tensorflow/cc/saved_model/loader.cc:311] SavedModel load for tags { serve }; Status: success. Took 1105321 microseconds.
+</font>
+* So, <font color='darkgreen'>'''TF1.15 + CUDA 10.0 might work with GeForce GTX 1080 Ti (compute capability 6.1)'''</font>
Oleg
Quad stereo tensorflow eclipse
← Older revision
Revision as of 20:32, 27 December 2019
(7 intermediate revisions by the same user not shown)Line 2:
Line 2:
* Install Eclipse * Install Eclipse
* Clone and Import [https://git.elphel.com/Elphel/imagej-elphel imagej-elphel] * Clone and Import [https://git.elphel.com/Elphel/imagej-elphel imagej-elphel]
−<font color='tomato'>'''Note: if the project is updated/pulled outside Eclipse - need manual refresh'''</font>+<font color='red'>'''NOTE: if project is updated/pulled outside Eclipse - might need a manual refresh'''</font>
+* TF version is pulled from pom.xml
+* Trained TF model for EO sensors is auto-downloaded - [https://community.elphel.com/files/quad-stereo/ml/trained_model_v1.0.zip trained_model_v1.0.zip]
+* Get some image samples, provide paths
+* Before running the plugin (Eyesis_Correction), copy imagej options to /home/user/.imagejs/Eyesis_Correction.xml:
+<font size='1'>
+ <?xml version="1.0" encoding="UTF-8"?>
+ <!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
+ <properties>
+ <comment>last updated Thu Sep 08 14:09:47 MDT 2042</comment>
+ <entry key="ADVANCED_MODE">True</entry>
+ <entry key="DCT_MODE">True</entry>
+ <entry key="MODE_3D">False</entry>
+ <entry key="GPU_MODE">True</entry>
+ <entry key="LWIR_MODE">True</entry>
+ </properties>
+</font>
+* Updaed pom.xml to TF 1.15 - package exists
+* Install cuDNN all 3 packages - runtime, dev and docs. Used docs to verify installation - built mnistCUDNN:
+ https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html
+* I think TF 1.15 maven package was built for CUDA 10.0 driver, and so it whines when 10.2 is installed.
+ <font size=1 color=red>2019-12-27 13:05:15.754656: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcudart.so.10.0'; dlerror: libcudart.so.10.0: cannot open shared object file: No such file or directory
+ 2019-12-27 13:05:15.754756: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcublas.so.10.0'; dlerror: libcublas.so.10.0: cannot open shared object file: No such file or directory
+ 2019-12-27 13:05:15.754860: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcufft.so.10.0'; dlerror: libcufft.so.10.0: cannot open shared object file: No such file or directory
+ 2019-12-27 13:05:15.754970: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcurand.so.10.0'; dlerror: libcurand.so.10.0: cannot open shared object file: No such file or directory
+ 2019-12-27 13:05:15.755075: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcusolver.so.10.0'; dlerror: libcusolver.so.10.0: cannot open shared object file: No such file or directory
+ 2019-12-27 13:05:15.755178: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcusparse.so.10.0'; dlerror: libcusparse.so.10.0: cannot open shared object file: No such file or directory
+ 2019-12-27 13:05:15.762197: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
+ 2019-12-27 13:05:15.762227: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1641] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.
+ Skipping registering GPU devices...</font>
Oleg
Quad stereo tensorflow eclipse
← Older revision
Revision as of 20:11, 27 December 2019
(6 intermediate revisions by the same user not shown)Line 2:
Line 2:
* Install Eclipse * Install Eclipse
* Clone and Import [https://git.elphel.com/Elphel/imagej-elphel imagej-elphel] * Clone and Import [https://git.elphel.com/Elphel/imagej-elphel imagej-elphel]
−<font color='tomato'>'''Note: if the project is updated/pulled outside Eclipse - need manual refresh'''</font>+<font color='red'>'''NOTE: if project is updated/pulled outside Eclipse - might need a manual refresh'''</font>
+* TF version is pulled from pom.xml
+* Trained TF model for EO sensors is auto-downloaded - [https://community.elphel.com/files/quad-stereo/ml/trained_model_v1.0.zip trained_model_v1.0.zip]
+* Get some image samples, provide paths
+* Before running the plugin (Eyesis_Correction), copy imagej options to /home/user/.imagejs/Eyesis_Correction.xml:
+<font size='1'>
+ <?xml version="1.0" encoding="UTF-8"?>
+ <!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
+ <properties>
+ <comment>last updated Thu Sep 08 14:09:47 MDT 2042</comment>
+ <entry key="ADVANCED_MODE">True</entry>
+ <entry key="DCT_MODE">True</entry>
+ <entry key="MODE_3D">False</entry>
+ <entry key="GPU_MODE">True</entry>
+ <entry key="LWIR_MODE">True</entry>
+ </properties>
+</font>
+* Updaed pom.xml to TF 1.15 - package exists
+* Install cuDNN all 3 packages - runtime, dev and docs. Used docs to verify installation - built mnistCUDNN:
+ https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html
+* I think TF 1.15 maven package was built for CUDA 10.0 driver
+ <font size=1 color=red>2019-12-27 13:05:15.754656: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcudart.so.10.0'; dlerror: libcudart.so.10.0: cannot open shared object file: No such file or directory
+ 2019-12-27 13:05:15.754756: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcublas.so.10.0'; dlerror: libcublas.so.10.0: cannot open shared object file: No such file or directory
+ 2019-12-27 13:05:15.754860: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcufft.so.10.0'; dlerror: libcufft.so.10.0: cannot open shared object file: No such file or directory
+ 2019-12-27 13:05:15.754970: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcurand.so.10.0'; dlerror: libcurand.so.10.0: cannot open shared object file: No such file or directory
+ 2019-12-27 13:05:15.755075: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcusolver.so.10.0'; dlerror: libcusolver.so.10.0: cannot open shared object file: No such file or directory
+ 2019-12-27 13:05:15.755178: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcusparse.so.10.0'; dlerror: libcusparse.so.10.0: cannot open shared object file: No such file or directory
+ 2019-12-27 13:05:15.762197: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
+ 2019-12-27 13:05:15.762227: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1641] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.
+ Skipping registering GPU devices...</font>
Oleg
Quad stereo tensorflow eclipse
ImageJ plugin
← Older revision Revision as of 19:04, 27 December 2019 (2 intermediate revisions by the same user not shown)Line 2: Line 2: * Install Eclipse * Install Eclipse * Clone and Import [https://git.elphel.com/Elphel/imagej-elphel imagej-elphel] * Clone and Import [https://git.elphel.com/Elphel/imagej-elphel imagej-elphel] −<font color='tomato'>'''Note: if the project is updated/pulled outside Eclipse - need manual refresh'''</font>+<font color='red'>'''NOTE: if project is updated/pulled outside Eclipse - might need a manual refresh'''</font> +* TF version is pulled from pom.xml +* Trained TF model for EO sensors is auto-downloaded - [https://community.elphel.com/files/quad-stereo/ml/trained_model_v1.0.zip trained_model_v1.0.zip] +* Get some image samples, provide paths +* Before running the plugin (Eyesis_Correction), copy imagej options to /home/user/.imagejs/Eyesis_Correction.xml: +<font size='1'> + <?xml version="1.0" encoding="UTF-8"?> + <!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd"> + <properties> + <comment>last updated Thu Sep 08 14:09:47 MDT 2042</comment> + <entry key="ADVANCED_MODE">True</entry> + <entry key="DCT_MODE">True</entry> + <entry key="MODE_3D">False</entry> + <entry key="GPU_MODE">True</entry> + <entry key="LWIR_MODE">True</entry> + </properties> +</font> OlegQuad stereo tensorflow eclipse
Created page with "==ImageJ plugin== * Install Eclipse * Clone and Import [https://git.elphel.com/Elphel/imagej-elphel imagej-elphel] <font color='tomato'>'''Note: if the project is updated/pull..."
New page
==ImageJ plugin==* Install Eclipse
* Clone and Import [https://git.elphel.com/Elphel/imagej-elphel imagej-elphel]
<font color='tomato'>'''Note: if the project is updated/pulled outside Eclipse - need manual refresh'''</font> Oleg
12/24/19 [imagej-elphel][lwir] by AndreyFilippov: debugging disparity grid distortion calculation
AndreyFilippov committed changes to the Elphel git project :
debugging disparity grid distortion calculation
debugging disparity grid distortion calculation
Tensorflow with gpu
Notes
← Older revision Revision as of 00:39, 24 December 2019 (2 intermediate revisions by the same user not shown)Line 177: Line 177: −==Walkthrough for CUDA 10.2 (Dec 2019)==+==Setup walkthrough for CUDA 10.2 (Dec 2019)== ===Install CUDA=== ===Install CUDA=== Line 222: Line 222: * In the docs it's clear that Docker version 19.03+ should use nvidia-docker2. For Docker of older versions - nvidia-docker v1 should be used. * In the docs it's clear that Docker version 19.03+ should use nvidia-docker2. For Docker of older versions - nvidia-docker v1 should be used. −* It's not immediately clear about the '''nvidia-container-runtime'''. nvidia-docker v1 & v2 already register it.+* It's not immediately clear about the '''nvidia-container-runtime'''. nvidia-docker v1 & v2 should have already registered it. ====Notes==== ====Notes==== Line 241: Line 241: * How to run tensorboard from the container: * How to run tensorboard from the container: <font size='2'># from [https://briancaffey.github.io/2017/11/20/using-tensorflow-and-tensor-board-with-docker.html here] <font size='2'># from [https://briancaffey.github.io/2017/11/20/using-tensorflow-and-tensor-board-with-docker.html here] − # From the running container's command line (since it was run with 'bash' in the step above):+ # From the running container's command line (since it was run with 'bash' in the step above). + # set a correct --logdir root@e9efee9e3fd3:/# '''tensorboard --bind_all --logdir=/app/log.txt''' # remove --bind_all for TF 1.15 root@e9efee9e3fd3:/# '''tensorboard --bind_all --logdir=/app/log.txt''' # remove --bind_all for TF 1.15 # Then open a browser: # Then open a browser: '''http://localhost:6006'''</font> '''http://localhost:6006'''</font> OlegTensorflow with gpu
Notes
← Older revision Revision as of 00:39, 24 December 2019 (35 intermediate revisions by the same user not shown)Line 176: Line 176: https://www.tensorflow.org/install/docker https://www.tensorflow.org/install/docker −==Walkthrough for CUDA 10.2 (Dec 2019)==+ +==Setup walkthrough for CUDA 10.2 (Dec 2019)== + +===Install CUDA=== +* In this [https://www.tensorflow.org/install/gpu guide] there's a [https://developer.nvidia.com/cuda-toolkit-archive link to CUDA toolkit]. +** The toolkit (CUDA Toolkit 10.2) also updated the system driver to 440.33.01 +** Will have to reboot + +===Docker=== +====Instructions==== +'''https://www.tensorflow.org/install/docker''' + +Quote: + Docker is the easiest way to enable TensorFlow GPU support on Linux since only the NVIDIA® GPU driver is required on the host machine (the NVIDIA® CUDA® Toolkit does not need to be installed). + +====Docker images==== +Where to browse: https://hub.docker.com/r/tensorflow/tensorflow/: +{| class='wikitable' +!TF version +!Python major version +!GPU support +!NAME:TAG for Docker command +|- +|align='center'|1.15 +|align='center'|3 +|align='center'|yes +|<font color='darkgreen'>'''tensorflow/tensorflow:1.15.0-gpu-py3''' +|- +|align='center'|2.0.0+ +|align='center'|3 +|align='center'|yes +|<font color='darkgreen'>'''tensorflow/tensorflow:latest-gpu-py3''' +|- +|align='center'|2.0.0+ +|align='center'|2 +|align='center'|yes +|<font color='darkgreen'>'''tensorflow/tensorflow:latest-gpu''' +|} + +====nvidia-docker==== +Somehow it was already installed. + +* Check NVIDIA docker version + ~$ nvidia-docker version + +* In the docs it's clear that Docker version 19.03+ should use nvidia-docker2. For Docker of older versions - nvidia-docker v1 should be used. +* It's not immediately clear about the '''nvidia-container-runtime'''. nvidia-docker v1 & v2 should have already registered it. + +====Notes==== +* Can mount a local directory in a 'binding' mode - i.e., update files locally so they are updated in the docker container as well: + <font size='2'># this will bind-mount directory '''target''' located in '''$(pwd)''', which is a dir the command is run from + # to '''/app''' in the docker container + + ~$ '''docker run \''' + '''-it \''' + '''--rm \''' + '''--name devtest \''' + '''-p 0.0.0.0:6006:6006 \''' + '''--mount type=bind,source="$(pwd)"/target,target=/app \''' + '''--gpus all \''' + <font color='darkgreen'>'''tensorflow/tensorflow:latest-gpu-py3</font> \''' + '''bash'''</font> + +* How to run tensorboard from the container: + <font size='2'># from [https://briancaffey.github.io/2017/11/20/using-tensorflow-and-tensor-board-with-docker.html here] + # From the running container's command line (since it was run with 'bash' in the step above). + # set a correct --logdir + root@e9efee9e3fd3:/# '''tensorboard --bind_all --logdir=/app/log.txt''' # remove --bind_all for TF 1.15 + # Then open a browser: + '''http://localhost:6006'''</font> OlegTensorflow with gpu
Notes
← Older revision Revision as of 00:39, 24 December 2019 (36 intermediate revisions by the same user not shown)Line 175: Line 175: # Test 3: Run a local script (and include a local dir) in contatiner: # Test 3: Run a local script (and include a local dir) in contatiner: https://www.tensorflow.org/install/docker https://www.tensorflow.org/install/docker + + +==Setup walkthrough for CUDA 10.2 (Dec 2019)== + +===Install CUDA=== +* In this [https://www.tensorflow.org/install/gpu guide] there's a [https://developer.nvidia.com/cuda-toolkit-archive link to CUDA toolkit]. +** The toolkit (CUDA Toolkit 10.2) also updated the system driver to 440.33.01 +** Will have to reboot + +===Docker=== +====Instructions==== +'''https://www.tensorflow.org/install/docker''' + +Quote: + Docker is the easiest way to enable TensorFlow GPU support on Linux since only the NVIDIA® GPU driver is required on the host machine (the NVIDIA® CUDA® Toolkit does not need to be installed). + +====Docker images==== +Where to browse: https://hub.docker.com/r/tensorflow/tensorflow/: +{| class='wikitable' +!TF version +!Python major version +!GPU support +!NAME:TAG for Docker command +|- +|align='center'|1.15 +|align='center'|3 +|align='center'|yes +|<font color='darkgreen'>'''tensorflow/tensorflow:1.15.0-gpu-py3''' +|- +|align='center'|2.0.0+ +|align='center'|3 +|align='center'|yes +|<font color='darkgreen'>'''tensorflow/tensorflow:latest-gpu-py3''' +|- +|align='center'|2.0.0+ +|align='center'|2 +|align='center'|yes +|<font color='darkgreen'>'''tensorflow/tensorflow:latest-gpu''' +|} + +====nvidia-docker==== +Somehow it was already installed. + +* Check NVIDIA docker version + ~$ nvidia-docker version + +* In the docs it's clear that Docker version 19.03+ should use nvidia-docker2. For Docker of older versions - nvidia-docker v1 should be used. +* It's not immediately clear about the '''nvidia-container-runtime'''. nvidia-docker v1 & v2 should have already registered it. + +====Notes==== +* Can mount a local directory in a 'binding' mode - i.e., update files locally so they are updated in the docker container as well: + <font size='2'># this will bind-mount directory '''target''' located in '''$(pwd)''', which is a dir the command is run from + # to '''/app''' in the docker container + + ~$ '''docker run \''' + '''-it \''' + '''--rm \''' + '''--name devtest \''' + '''-p 0.0.0.0:6006:6006 \''' + '''--mount type=bind,source="$(pwd)"/target,target=/app \''' + '''--gpus all \''' + <font color='darkgreen'>'''tensorflow/tensorflow:latest-gpu-py3</font> \''' + '''bash'''</font> + +* How to run tensorboard from the container: + <font size='2'># from [https://briancaffey.github.io/2017/11/20/using-tensorflow-and-tensor-board-with-docker.html here] + # From the running container's command line (since it was run with 'bash' in the step above). + # set a correct --logdir + root@e9efee9e3fd3:/# '''tensorboard --bind_all --logdir=/app/log.txt''' # remove --bind_all for TF 1.15 + # Then open a browser: + '''http://localhost:6006'''</font> OlegTensorflow with gpu
nvidia-docker
← Older revision Revision as of 00:02, 24 December 2019 (34 intermediate revisions by the same user not shown)Line 175: Line 175: # Test 3: Run a local script (and include a local dir) in contatiner: # Test 3: Run a local script (and include a local dir) in contatiner: https://www.tensorflow.org/install/docker https://www.tensorflow.org/install/docker + + +==Walkthrough for CUDA 10.2 (Dec 2019)== + +===Install CUDA=== +* In this [https://www.tensorflow.org/install/gpu guide] there's a [https://developer.nvidia.com/cuda-toolkit-archive link to CUDA toolkit]. +** The toolkit (CUDA Toolkit 10.2) also updated the system driver to 440.33.01 +** Will have to reboot + +===Docker=== +====Instructions==== +'''https://www.tensorflow.org/install/docker''' + +Quote: + Docker is the easiest way to enable TensorFlow GPU support on Linux since only the NVIDIA® GPU driver is required on the host machine (the NVIDIA® CUDA® Toolkit does not need to be installed). + +====Docker images==== +Where to browse: https://hub.docker.com/r/tensorflow/tensorflow/: +{| class='wikitable' +!TF version +!Python major version +!GPU support +!NAME:TAG for Docker command +|- +|align='center'|1.15 +|align='center'|3 +|align='center'|yes +|<font color='darkgreen'>'''tensorflow/tensorflow:1.15.0-gpu-py3''' +|- +|align='center'|2.0.0+ +|align='center'|3 +|align='center'|yes +|<font color='darkgreen'>'''tensorflow/tensorflow:latest-gpu-py3''' +|- +|align='center'|2.0.0+ +|align='center'|2 +|align='center'|yes +|<font color='darkgreen'>'''tensorflow/tensorflow:latest-gpu''' +|} + +====nvidia-docker==== +Somehow it was already installed. + +* Check NVIDIA docker version + ~$ nvidia-docker version + +* In the docs it's clear that Docker version 19.03+ should use nvidia-docker2. For Docker of older versions - nvidia-docker v1 should be used. +* It's not immediately clear about the '''nvidia-container-runtime'''. nvidia-docker v1 & v2 should have already registered it. + +====Notes==== +* Can mount a local directory in a 'binding' mode - i.e., update files locally so they are updated in the docker container as well: + <font size='2'># this will bind-mount directory '''target''' located in '''$(pwd)''', which is a dir the command is run from + # to '''/app''' in the docker container + + ~$ '''docker run \''' + '''-it \''' + '''--rm \''' + '''--name devtest \''' + '''-p 0.0.0.0:6006:6006 \''' + '''--mount type=bind,source="$(pwd)"/target,target=/app \''' + '''--gpus all \''' + <font color='darkgreen'>'''tensorflow/tensorflow:latest-gpu-py3</font> \''' + '''bash'''</font> + +* How to run tensorboard from the container: + <font size='2'># from [https://briancaffey.github.io/2017/11/20/using-tensorflow-and-tensor-board-with-docker.html here] + # From the running container's command line (since it was run with 'bash' in the step above): + root@e9efee9e3fd3:/# '''tensorboard --bind_all --logdir=/app/log.txt''' # remove --bind_all for TF 1.15 + # Then open a browser: + '''http://localhost:6006'''</font> OlegPages
